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USE OF EBSD DATA IN MESOSCALE NUMERICAL ANALYSES 

Richard Becker' and Hasso Weiland' 

'Lawrence Livermore National Laboratory 
Livermore, CA 94550 

'Alcoa Technical Center 
Alcoa Center, PA 15069 

INTRODUCTION 

Experimentation, theory, and modeling have all played vital roles in defining what is 
known about microstructural evolution and the effects of microstructure on material 
properties. Recently, technology has become an enabling factor, allowing significant 
advances to be made on several fronts. Experimental evidence of crystallographic slip and 
the basic theory of crystal plasticity were established in the early 20th century (Polanyi, 
1922; Schmid, 1924; Taylor and Elam, 1925), and the theory and models evolved 
incrementally over the next 60 years (Taylor, 1938; Bishop and Hill, 1951; Hutchinson, 
1964; Hill and Rice, 1972; Honneff and Mecking, 1978; Asaro, 1983a; Kocks et al., 1986). 
During this time, modeling was primarily concerned with the average response of 
polycrystalline aggregates. While some detailed finite element modeling (FEM) with 
crystal plasticity constitutive relations was performed in the early 1980's (Peirce et al., 
1982, 1983) such simulations over taxed the capacity of the available computer hardware. 
Advances in computer capabilities led to a flurry of activity in finite element modeling in 
the next 10 years (Harren et al., 1988; Havileck et al., 1990; Zikry and Nemat-Nasser, 
1990; Becker et al., 1991; Kalidindi et al., 1992; Beaudoin et al., 1993; Saeedvafa and 
Rice, 1992; Mohan et al., 1992), thus increasing understanding of lattice orientation 
evolution and generating detailed predictions of spatial orientation distributions that could 
not be readily validated with existing experimental characterization methods. 

Significant advancements in material characterization, particularly automated electron 
backscatter diffraction (EBSD), have made it possible to conduct detailed validation 
studies of the FEM predictions. The data collected are extensive, and many questions 
about the evolution of microstructure and its role in determining mechanical properties can 
now be addressed. It is now possible to obtain a detailed map of lattice orientations on a 
fine size scale. This will allow detailed quantitative comparisons of experiments and newly 
emerging large scale continuum FEM simulations. This capability will facilitate model 
validation efforts aimed at predicting deformation induced structural features, such as shear 
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bands and cell structures, as well as predictions of the effects of grain interactions. The 
insight gained from the coupling of EBSD and FEM studies will provide impetus for 
further development of microstructure models and theories of microstructure evolution. 

Early studies connecting EBSD data to detailed finite element models used manual 
measurements to define initial orientations for the simulations (Becker, 199 1, 1998; 
Beaudoin et al., 1998). In one study, manual measurements of the deformed structure were 
also obtained for comparison with the model predictions (Becker and Panchanadeeswaran, 
1995). More recent work has taken advantage of automated data collection on deformed 
specimens as a means of collecting detailed and spatially correlated data for FEM model 
validation (Weiland and Becker, 1999; Bhattacharyya et al., 2000). 

Although it will not be discussed here, EBSD data can also be incorporated in FEM 
analyses in a less direct manner that is suitable for simulations where the element size is 
much larger than the grain size. The purpose of such models is to account for the effects of 
evolving material anisotropy in macro-scale simulations. In these analyses, a polycrystal 
plasticity model (e.g., a Taylor model or a self-consistent model), or a yield surface 
constructed from a polycrystal plasticity model, is used to determine the constitutive 
response of each element. The initial orientations used in the polycrystal plasticity model 
can be obtained from EBSD analyses (Bingert et al., Chapter 18, this volume) or by fitting 
distributions of discrete orientations to x-ray data (Becker, 1992; Kalidindi et al., 1992). 
The use of EBSD data is advantageous in that it is easier to account for spatial gradients of 
orientation distribution within a part. 

Another area in which EBSD data is having a great impact is on recrystallization 
modeling. EBSD techniques can be used to collect data for quantitative microstructural 
analysis (Humphreys, 1998). This data can be used to infer growth kinetics of specific 
orientations, and this information can be synthesized into more accurate grain growth or 
recrystallization models (Vogel et al., 1996). A second role which EBSD techniques may 
play in recrystallization modeling is in determining initial structures for the models. A 
realistic starting structure is vital for evaluating the models, and attempts at predicting 
realistic structures with finite element simulations are not yet successful (Humphreys, 
1999). As methodologies and equipment resolution continue to improve, it is possible that 
measured structures will serve as input for recrystallization models. Simulations have 
already been run using information obtained manually from a TEM (Radhakrishnan and 
Baggathun, 2000). 

CRYSTAL PLASTICITY MODEL 

The impetus behind the growing use of EBSD for characterization and analysis of 
orientation microstructures is the prominent role that crystal lattice orientations have in 
determining many material properties. This implies a corresponding need to include 
crystal orientation in material models. To construct models that can capture 
microstructural effects and that are truly representative of the material at grain level, it is 
important to incorporate the basic physical mechanisms. For deformation models, this 
means accounting for changes of shape and lattice orientation based on crystallographic 
slip. EBSD data provides a means to assess the strengths and weaknesses of these models 
so that their range of validity can be defined and areas for improvement can be identified. 

The ideas of slip and lattice rotation were introduced in Taylor's (1 938) seminal work, 
and they were given a more complete theoretical treatment in several later papers (e.g., Hill 
and Rice, 1972; Asaro, 1983b). Asaro (1983b) provides a comprehensive description of 
the basis for the crystal plasticity model. The concepts are generally accepted and serve as 
the basis for polycrystal texture evolution models such as the Taylor model, the Sachs 
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model, and self-consistent models. Crystal plasticity constitutive relations have been 
incorporated into finite element codes for examining details of deformation in single 
crystals (Peirce et al., 1982, 1983; Harren et al., 1988; Becker et al., 1991; Saeedvafa and 
Rice, 1992; Mohan et al., 1992) and polycrystals (Havileck et al., 1990; Kaladindi et al., 
1992; Becker, 1991, 1998; Beaudoin et al., 1998; Becker and Panchanadeeswaran, 1995). 
Although there have been many implementations of slip-based models, the basic kinematic 
description for most existing models is the same. 

The integration methods used with early finite element implementations of crystal 
plasticity relations were developed for stepwise integration of the stress and state variables 
(Peirce et al., 1982, 1983; Harren et al., 1988; Havilcek, 1990; Zikry and Nemat-Nasser, 
1990; Becker et al., 1991). Some more recent implementations (Kalidindi et al., 1992; 
Beaudoin et al., 1993; Miehe, 1996; Ortiz and Stainier, 1999; Harren, 2000) follow a total 
Lagrange formulation where the stress is evaluated directly from a strain energy function 
and arbitrarily large rigid body rotations can be accommodated within an increment. The 
kinematics are the same; it is the integration strategy which differs. 

Crystal Kinematics 

The basis for the kinematic description is a multiplicative decomposition of the 
deformation gradient, F, into an elastic part, F’, and a plastic part, FP. 

(16.1) 

This is shown schematically in Figure 16.1. The plastic part captures the deformation by 
crystallographic slip. It does not distort the lattice or change its orientation. The elastic 
part accounts for rotation and distortion of the crystal lattice, and it provides the connection 
to EBSD data. Through the polar decomposition theorem, it can be written as 

(1 6.2) 

where R* is the rotation taking the crystal from its reference orientation to its present 
orientation. This corresponds directly to the orientation obtained from an EBSD 

Figure 16.1. Illustration of deformation by slip and distortion of the crystal lattice. 
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measurement. UIrepresents the elastic distortion of the crystal lattice, which is small for 
typical metal forming problems. It is initially set to the identity for problems with no 
residual stress. In this case the orientations measured with EBSD can be input directly as 
the initial value of F' . 

The plastic deformation within a volume element is specified in terms of the average 
slip rate, y",  on a slip system. The slip rate is related to the plastic part of the deformation 
gradient by 

(1 6.3) 

where the slip plane normal is given by m; and the slip direction is si .  The superscript a 
is an index representing one of N slip systems. Equation 16.3 is a representation of the 
deformation rate in the intermediate configuration of Figure 16.1, where the lattice is 
undistorted and in its initial orientation. 

An expression giving the slip rate in the current configuration can be found by 
constructing the velocity gradient, L, from Equation 16.1 

(1 6.4) 

The first and second terms on the right hand side are the elastic and plastic parts of the 
velocity gradient, L' and LI', respectively. Using Equation 16.3 the plastic part of the 
velocity gradient can be written as 

(16.5) 
a=l 

where 

are the slip direction and slip plane normal in the current configuration. sa and ma are 
assumed to be orthogonal for slip processes, so the plastic part of the deformation is 
isochoric. 

Equations can be written for the evolution of sa and ma in terms of F* by taking 
time derivative of Equation 16.6. However, in practice they are typically evaluated 
directly from Equation 16.6 for a given F'. F' is either integrated from 

(1 6.7) 

or it is calculated through Equation 16.1 where F is known from the configuration and FP 
is integrated from Equation 16.3 

FP (1 6.8) 

Integration through Equation 16.7 is used with updated Lagrangian methods, while the 
combination of Equations 16.1 and 16.8 is often used in full Lagrangian formulations. 
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Stress-Strain Relations 

It is assumed that the stress is related to the elastic distortion of the crystal lattice 
through a strain energy function $. The second Piola-Kirchhoff stress, T*, and its rate can 
be given by 

The Lagrangian strain of the lattice, E*, is 

(1 6.9) 

(16.10) 

where C' is the right Cauchy-Green stretch tensor of the lattice. K in Equation 16.9b is 
the fourth order crystal modulus tensor, usually set in a reference frame coincident with 
principle lattice directions. 

The second Piola-Kirchhoff stress is related to the Kirchhoff stress, 7, and the Cauchy 
stress, (3 , as 

(16.1 1) 

where J =  detl F I, is the ratio of the deformed volume to the reference volume. Since the 
plastic deformation is isochoric, J =  detl F* 1, the elastic volume change. J is typically very 
close to one for industrial forming operations, so the distinction between the Cauchy stress 
and the Kirchhoff stress is usually ignored. 

An expression for the stress rate can be obtained by taking the derivative of Equation 
16.1 1 and combining terms (Asaro, 1983). After some manipulation, the Jaumann rate of 
the Kirchhoff stress can be written as 

N 
.Z = t-  O . T +  7 . 0  = rn : D -  C j a ~ "  (16.12) 

a=l 

where D is the rate of deformation tensor (symmetric part of the velocity gradient); o is the 
spin tensor (asymmetric part of the velocity gradient); 3 4  is a fourth order modulus 
obtained by rotating the crystal modulus 3( into the laboratory reference frame and adding 
a few terms on the order of stress; Ra is given by 

R" = 3\/1 : P a  + W" .T- T* W a  (16.13) 

and 

Pa=I-(s"€3mn+m"@s") 2 and W" = + ( s a  @ma -ma @ s a )  (16.14) 

Equation 16.12 is used in updated Lagrangian integration schemes where the stress is 
integrated in time. Equation 16.9a is often used to compute the stress directly from E* in 
full Lagrangian formulations. Although the relations for the full Lagrangian approach 
appear much simpler, the derivatives needed for a Newton iteration scheme resemble 
Equations 16.12 and 16.13. Actual coding for the full Lagrangian formulation can be 
somewhat more involved because of convergence checking and correction updates. The 
advantage of the full Lagrange formulation is stability and accuracy for large rigid body 
rotation increments. 
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Slip System Constitutive Relations 

For crystals obeying the Schniid criterion, slip is assumed to be related only to the 
resolved shear stress on the slip systems. In a rate independent model, the slip rate is 
generally taken to be proportional to the rate of change of the resolved shear stress. In a 
rate dependent model, the slip rate is assumed to be related to the resolved shear stress 
itself, not its rate. The resolved shear stress on a slip system, z ~ ,  can be determined from 

in the intermediate configuration of Figure 16.1, and 

for a formulation based in the current configuration. 
Because slip on multiple combinations of slip systems can accommodate many 

deformation modes, rate independent constitutive models can lead to ambiguities in the 
solution. The degree of slip on each system may be indeterminate. Although use of some 
slip system hardening relations (Bassani, 1990) or the single valued decomposition method 
(Anand and Kothari, 1996) can be used to obtain a solution, the most coinmon method 
currently employed to circumvent this slip system indeterminacy is to use a rate dependent 
slip system model. Here the slip rate is given uniquely in terms of the resolved shear stress 
on the slip system, T ~ ,  and its resistance to slip, ga. 

A simple power law strain rate sensitivity takes the form: 

( 1 6.1 7) 

where a is a reference slip rate and m is the strain rate sensitivity exponent. 
The resistance of a slip system can be written as an evolution equation 

N 

g" = Hap l ip (16.18) 
p= I 

where Hap is an evolving matrix capturing hardening interactions among slip systems. The 
model allows considerable flexibility for specifying the strength evolution, but most 
current simulations adopt a rather simple specification where Hap evolves proportionally 
with deformation: 

(1 6.19) 

Here, g' is typically assumed to be a function of the accumulated slip with ha, being a 
constant matrix. If the hardening of a slip system due to its own activity is assumed to be 
equal to the hardening due to activity on other slip systems, ha, is fully populated with 
ones. This is the most common assumption, and it was the assumption used in generating 
the results presented here. More comprehensive slip system hardening models have been 
proposed that more accurately represent detailed observations of secondary slip initiation 
(Bassani and Wu, 1991; Cuitino and Ortiz, 1992), but these have not yet found widespread 
use in modeling activities. 
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CRYSTAL MODEL VALIDATION 

As the automated collection of EBSD data is relatively new, methods of coupling the 
experimental data to finite element simulations are still under development. While there 
have been several excursions into applications (Becker, 1998; Beaudoin et al., 1998), most 
detailed, joint EBSD-FEM studies to date have been conducted for purposes of model 
validation. In these studies, the orientations measured from EBSD are compared with those 
calculated from the finite element model either though pole figures or spatial maps of the 
orientation distribution. Some earlier studies used manually collected measurements of 
orientations on a section before and after deformation to assess the validity of FEM 
solutions (Becker and Panchanadeeswaran, 1995). More recent efforts are using 
automatically collected data and three-dimensional deformation models (Weiland and 
Becker, 1999; Bhattacharyya et al., 2000). 

Split Channel Die Polycrystal Sample 

An early validation study using EBSD data was conducted by Panchanadeeswaran et 
al., (1996). A cast commercial purity aluminum sample with a grain size of 200 pm was 
machined for a channel die compression experiment. The sample was split in half with the 
dividing plane normal being in the constraint direction of the specimen. Both new surfaces 
were polished. One of the mating surfaces had a region marked with microhardness 
indents over a 2 X 2 mm square area. The grain morphology and orientations in the region 
were then recorded, Figure 16.2a, b. The sample was reassembled and deformed to 40% 
reduction in the channel die at 375°C. 

The locations of the hardness indents were recorded from the deformed sample and 
used to calculate the average strain experienced by the region. There was substantial shear 
in addition to the compression, as evident in Figure 16.2~. This shear is consistent with the 
inadvertent macroscopic shear of the specimen during the compression test. Manual 
orientation measurements were made on several grains in the marked area of the deformed 
sample. 

The measured locations of the initial grain boundaries from a region containing 35 
grains were used to construct a two dimensional finite element mesh of 2 187 quadrilateral 
elements in which the mesh lines conformed to the grain boundaries. The mesh was 
continuous across the grain boundaries, simulating deformation with no grain boundary 
sliding. The initial lattice orientations for each grain were assigned based on the 
measurements. 

The slip system hardening and strain rate sensitivity used in the simulation were 
deduced by taking polycrystal data and using an average Taylor factor to scale the stress 
and strain rate to obtain approximate values of resolved shear stress and slip rate. All slip 
systems were assumed to harden equally. With this construction, a Taylor polycrystal 
model will approximately replicate the original experimental stress strain curve. The two 
dimensional model simulated deformation in plane strain compression with the final 
applied configuration being consistent with that measured from the microhardness indents, 
Figure 16.2~. 

Comparison of the experimental and calculated orientation distributions for individual 
grains shows some for which the agreement is good, Figure 16.3a and others where the 
simulations failed to predict the observed orientation spread, Figure 16.3b. In general, 
agreement was only found when orientation changes were small. Since such grains do not 
provide a critical test for the model, one might be hesitant to conclude that the model 
predictions were proven successful for any of the grains examined. 
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Figure 16.2. Microhardness indents on the split channel die compression specimen: a) as seen on the 
specimen; b) initial indent pattern and c) pattern after deformation. 

Observation of many pole figures from the simulation showed that orientation 
changes resulted primarily from rotations about an axis normal to the model plane. This 
was the case even though all twelve slip systems were modeled and the lattice was free to 
rotate about any arbitrary axis in three dimensional space. Rotation only about the model 
plane was also observed in an earlier study (Becker, 1991). This behavior is thought to be 
a result of the kinematic freedom for material spin about that axis and thus only captures 
shear stress and grain interactions in the model plane. The same grain configuration was 
used in another simulation with the initial orientations rotated 90 degrees about the 
extension axis. The deformation mode was generalized plane strain, with the compression 
being the out of plane direction. The coincidence of the rotation axis with the normal to 
the model plane was again evident (Becker and Panchanadeeswaran, 1995). This verified 
that the predominant rotation about the model plane is indeed an artifact of the two- 
dimensional model. In addition to these difficulties, it was clear from the results that grain 
shapes and neighboring grains have a significant impact on orientation changes. Thus, it is 
important to include grain interactions in all directions. 

A conclusion from the study was that it is not possible to obtain a realistic 
approximation of a deformed three dimensional microstructure with a two dimensional 
model except for a very restricted class of orientations. Accurate predictions of local 
lattice orientations require a detailed three dimensional representation of the microstructure 
and a means of applying boundary conditions to the model without introducing significant 
artificial constraint. 

These conclusions suggest two paths for constructing model validation studies: 
characterize and test a three-dimensional grain structure or construct idealized specimens 
for which the grain structure is known. With the technology available until recently, the 
former option involved serial sectioning where the specimen is destroyed. This prohibits 
one to one validation, but it is useful for deformation studies on a larger size scale. Such 
characterization has been performed on a tantalum specimen (StGlken et al., 1999). Recent 
advances in 3-D characterization using synchrotron radiation look promising as a non- 
destructive method of mapping the initial microstructure (Juul Jensen, Chapter 8, this 
volume). This technology may enable 3-D validations studies in the near future. The 
second validation option is achievable by constructing columnar grain samples where the 
grain structure is constant in one direction. While the configuration is not representative of 
a typical polycrystal sample, it is useful for model validation. 
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Figure 16.3. Comparison of experimental and predicted (1 1 1) pole figures from the split channel die 
compression study. Examples of a) agreement and b) disagreement. Experimental pole figures are on the left 
and the model results are on the right. 

Deformation of a Quasi-Columnar Grain Sample Along the Growth Direction 

Two recent studies (Weiland and Becker, 1999; Bhattacharyya et al., 2000) have used 
columnar grain samples in coordinated EBSD-FEM validation efforts. Both studies started 
with the same directionally solidified aluminum castings that produced quasi-columnar 
grains running in the solidification direction. Nearly all of the grains had a (001) crystal 
direction approximately aligned with the solidification direction. In the work by 
Bhattacharyya et al., (2000), a 3 mm thick slice of the casting was examined where the 
columnar axis was in the thickness direction of the slice. The sample was characterized by 
EBSD on both sides of the slice. Since the columnar grain growth was imperfect, there 
was a variation in grain shape from one side to the other. One side had coarser grains, 
indicating that some of the grains terminated within the specimen. The sample was 
compressed 40% of its initial height by uniaxial compression with the compression axis 
being the axis of the columnar grains. Since the initial orientations were near (001) and the 
stable orientation for uniaxial compression is (1 lo), considerable lattice rotation was 
expected. 

The deformed specimen was characterized by automated EBSD for comparison with 
the simulations. A prominent feature found on the orientation maps was the occurrence of 
distinct bands or regions of differing orientation within the grains. In some grains the 
bands were solitary, while in others, several narrow parallel bands of alternating 
orientation were observed. 

A uniform finite element mesh of hexahedral elements was created to model the 
compression specimen. Mesh regions were identified with specific grains from the initial 
EBSD map of the coarse grained side of the sample, and the appropriate orientations were 
assigned to the elements. Since the mesh was regular, the mesh lines did not conform to 
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the grain boundaries, and the grain boundaries in the model had a stepped appearance. The 
specimen was modeled with one element through the thickness of the slice. Boundary 
conditions applied to the four planes orthogonal to the compression plane required that 
these faces remain planar and orthogonal. 

An orientation map constructed from the deformed finite element model failed to 
show the orientation banding observed in the experiments, and comparison of the predicted 
pole figures with the experimental results also failed to show the correct distribution of 
lattice rotation in many grains. These two observations are consistent and suggest that the 
local deformation pattern may not have been predicted correctly either. Since deformation 
is a combination of rotation and strain, this lack of agreement in orientation also suggests 
that the deformation pattern may be in error. Potential reasons for failure of the model will 
be discussed below. 

Transverse Deformation of a Quasi-Columnar Grain Sample 

In another study (Weiland and Becker, 1999) using the columnar grain material, 
segments of the casting were annealed prior to excising the specimens. This produced 
centimeter-sized grains with considerably less variation along the growth axis. Channel 
die compression specimens with dimensions 10 mm thick by 15 mm high by 25 mm long 
were machined for this study. The growth axis of the grains was aligned with the 
constraint direction (10 mm direction) of the channel die. The grain patterns were very 
similar on both sides of the specimen, indicating that the desired columnar grain structure 
was nearly achieved. The initial grain structure was photographed on all faces, and the 
grain orientations were measured at several points by EBSD. As with the study described 
above, the grains tended to have the (001) direction aligned within 5 to 10 degrees of the 
growth axis. The samples were deformed to 15% compression in a channel die at room 
temperature and at 200°C. 

Here, attention will be focused on one sample that contained three grains. The 
specimen and its initial lattice orientations are shown in Figure 16.4. The deformed 
specimen is shown in Figure 16.5. The labels CD and ED refer, respectively, to the 
compression direction and extension direction of the sample. As the sample was deformed 
in a channel die, little deformation occurred in the constraint direction. However, 
deformation by slip has normal-shear coupling, and the deformation on the plane normal to 
the constraint direction varied through the thickness of the sample. For example, the 
“foot” on the lower right of the deformed sample varied in size and shape through the 
thickness of the specimen. 

OED 
100 

CD 

:D 

Figure 16.4. Initial specimen geometry and orientation for columnar grain tricrystal. 
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Compression 
Direction (CD) 

Extension 
Direction (ED) 

Figure 16.5. Columnar grain tricrystal following 14% compression in a channel die. The white rectangles 
mark regions where OIM scans were taken. 

EBSD scans of the deformed sample were taken from within the three boxes indicated 
on Figure 16.5. Two of these are within single crystal regions fairly far removed from a 
grain boundary and the third, the center box, includes all three grains near the triple point. 
Orientation maps from these three regions and the corresponding (1 1 1) pole figures are 
shown in Figures 16.6-16.8. The contour maps in Figures 16.6 and 16.7 were created by 
selecting a location near the center of the region and applying the same shading to all 
points which had an orientation within 5 degrees of the selected orientation. Regions with 
an orientation greater than 5 degrees from the reference were shaded another color. The 
same shading is applied to the corresponding points on the pole figures. The white lines on 
the contour plots represent the orientations of slip traces observed on the surface of the 
deformed specimen. 

ED 
1000.0 urn = 100 steps L CD w 111 

Figure 16.6. EBSD orientation map from the region in grain 1 of Figure 16.5. The white line indicates a slip 
trace. 

Figure 16.7. EBSD orientation map from the region in grain 3 of Figure 16.5. The white line indicates a slip 
trace. 
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~~~ ~ 

1000.0 pm = 100 steps 

Figure 16.8. Orientation map covering the triple junction of the tricrystal. Regions labeled 1 and 2 are 
subdivisions of grain # I ;  A, B and C are subdivisions of grain #2; and I and I1 are subdivisions of grain #3. 
The white line indicates the slip trace direction. 

Figures 16.6 and 16.7 are, respectively, from the large single crystal regions on the 
left and right ends of the specimen. In both cases, the lattice rotation from one end of the 
plot to the other is greater than 10 degrees. The contour boundaries are aligned with the 
slip traces in both cases. This suggests that the orientation is roughly constant along the 
slip trace and that the orientation gradient is greatest in the direction normal to the slip 
plane. Had slip occurred uniformly in the region, the lattice would have the same 
orientation throughout. Hence, the plots indicate a significant gradient in slip activity over 
the region. 

The EBSD scan containing the triple point, Figure 16.8, is more complex, but the 
same correlation can be observed between the orientation gradients and the dominant slip 
trace: the orientation is fairly constant along the direction of the slip trace, and it varies 
normal to the trace. It is also observed that the slip traces lie along different directions 
than in the regions of the crystal remote from the triple junction. This is a result of the 
complex stress state found at the triple point. Grain 3 in Figure 16.8 also displays a banded 
orientation structure reminiscent of that observed by Bhattacharyya et al. (2000). The lack 
of such a structure in other portions of the same grain, Figure 16.7, supports the hypothesis 
that such structures form for certain combinations of loading and crystal orientations but 
not others. 

The finite element mesh used to simulate the deformation is shown in Figure 16.9. It 
contains approximately 20000 hexahedral elements. The lattice orientations were assigned 
based on the EBSD measurements. Boundary conditions were chosen to simulate 
deformation in a channel die. The width of the channel was wider than the undeformed 
specimen to permit insertion of the specimen along with PTFE tape for a lubricant. To 
capture the initial broadening of the specimen, the channel was modeled as rigid surfaces 
10.35 mm apart while the initial specimen width was 9.98 111111. This allows a lateral 
spread of approximately 4%. Deformation was achieved by displacing the upper surface 
with respect to the lower at a constant velocity. 

The deformed specimen shape and predicted contours of accumulated slip are shown 
in Figure 16.10. The specimen outline shows that a “foot” was predicted on the lower left 
of the specimen, but the magnitude and bhape differ from that observed in Figure 16.5. 
Another feature of the deformed shape worth noting is the slope of the boundary on the left 
side of the crystal. The simulation predicts that the boundary will be inclined with the top 
moving toward the right with respect to the bottom. The experiment shows the top moving 
toward the left with respect to the bottom. This is obviously a source of concern. In 
attempts to obtain better qualitative agreement, many perturbations were made to the initial 
orientation, the friction, slip system hardening relations, strain rate sensitivity and channel 
width. None of these measures caused the slope on the left side of the model to have the 
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correct sign. The predicted pole figure from the model region corresponding to Figure 
16.6 shows no discernible orientation spread and very little lattice rotation. This is 
consistent with Figure 16.10, which shows little difference in accumulated slip across the 
region. 

The reason that the models fails to predict several gross features of the experiment is 
not known. Two possible explanations that were not explored are: the finite element 
discretization may inhibit gradient development; and the coarse slip bands may alter the 
slip system hardening relations. These issues will be discussed in more detail later. 

cIo\’ 

Figure 16.9. Finite element mesh used to simulate the deformation of the columnar grain tricrystal. 

Figure 16.10. Predicted contours of accumulated slip from the finite element model of the tricrystal. 

Direct Mapping of EBSD Data to a Finite Element Simulation 

In the examples cited above, regions of the finite element model were defined as 
grains based on grain boundaries identified through micrographs or EBSD data. All of the 
elements within each grain were assigned the same initial orientation. A more direct and 
automated assignment of orientations was explored by Kallivayalil et al. (1998). In that 
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work, a region near the surface of an aluminum sample was characterized by an automated 
EBSD scan. A 100 X 250 regular finite element mesh was constructed to be the same size 
as the scanned region. The initial lattice orientation of each element was determined by 
calculating the element centroid coordinates and locating the nearest corresponding point 
in the EBSD map. The orientation of this point in the EBSD database was computed in 
terms of a rotation matrix, and this matrix was used as the initial F* in the model. As a 
result of this initialization procedure, any orientation variation present in the measurements 
was reflected in the finite element model. A contour plot of F11, a component of the 
rotation matrix identifying the initial orientation of the crystal lattice, is shown in Figure 
16.1 1. The plot looks remarkably like an EBSD orientation map. 

The free surface of the specimen is at the bottom of the model shown in Figure 16.1 1. 
The nodes on the upper surface were constrained from motion in the vertical direction but 
were free to move horizontally. On the left side of the model, the nodes were constrained 
horizontally and free to move vertically. Deformation was applied by moving the nodes on 
the right side of the model. The region was deformed 4% in plane strain tension. 

Contours of accumulated slip from the simulation are shown in Figure 16.12. The 
notable feature of these results is the appearance of fine structure and slip patterning. 
These features appear realistic but have not been observed in other simulations. They 
could be the result of a combination of factors, but further exploration is needed to 
determine a definite origin. The most obvious factors distinguishing this model from 
others are: i) a very fine spatial discretization giving the solution significantly more 
degrees of freedom, ii) a large number of grains and interacting neighbors to drive 
nonuniform deformation patterns, and iii) the presence of a free surface on the bottom of 
the model. 

Figure 16.11. Contour plot from the FEM code showing the “1 1” component of the rotation matrix defining 
the initial lattice orientations. 

Figure 16.12. Contours of maximum principal logarithmic strain following 4% strain of the model with 
orientations defined in Figure 16.1 1. 
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CRYSTAL MODEL VALIDATION 

The availability of data collected from automated EBSD enables a critical evaluation 
of the accuracy of mesoscale finite element crystal plasticity models. The significant 
disagreement found between model and experiment in the examples presented above 
highlights the importance of conducting such validation studies. Validation studies define 
the expected quality of the predictions and identify aspects of the problem which must be 
defined accurately to obtain a reasonable solution. 

Based on the success of Taylor-like polycrystal models for predicting texture 
evolution, it was at first anticipated that a discretized model of a two dimensional section 
would give nearly correct orientation predictions since equilibrium and compatibility could 
both be satisfied. This proved not to be the case. It was then suggested that properly 
accounting for the details of the grain structure and the boundary conditions would fix the 
problem. This was also not sufficient. Even when the full three dimensional grain 
structure was known and boundary condition approximations were avoided by modeling 
the full specimen, the model failed to predict gross features of the specimen deformation as 
well as the significant orientation gradients. There is obviously something else that is not 
being modeled properly. 

The potential causes of the disagreement have not been investigated thoroughly, so 
additional studies must be conducted to isolate the factors and propose guidelines for 
future modeling. Possible sources of modeling error can be put into two broad classes: 
deficiencies in the finite element model and deficiencies in the crystal model itself. 

Of several possible finite element model deficiencies, one is clearly inadequate spatial 
discretization. In the columnar grain studies of Bhattacharyya et al. (2000), the element 
size was larger than 150 pm and the element size was on the order of 700 pm in the study 
by Weiland and Becker (1999). In both cases, the experiments showed band formation 
with a spacing on the order of 100 pm. To capture features of this size, the elements 
would need to be on the order of 10 pm or less. It is clear that the models would never 
capture these features with the given discretization. The element size must be much 
smaller than the size of the important features that are to be captured. 

The finite element model will also not allow abrupt orientation changes unless the 
plane across which the orientation changes coincides with the mesh lines. Such abrupt 
orientation changes are prominent features near the triple point in Figure 16.8, and they are 
also found in EBSD studies of single crystals (e.g., Schwartz et al., 2000). If the mesh 
alignment prohibits the formation of these bands, the solution could be perturbed 
significantly. 

Additionally, the alignment of the elements with the direction of the slip gradients 
may play a role. It has long been known that proper mesh construction is critical in 
capturing incipient shear bands (Tvergaard et al., 1981). If the mesh is not aligned 
properly, the added mesh constraint can delay or prevent the appearance of a shear band. 
In the case of crystal modeling, the banded structure observed by Bhattacharyya et al., 
(2000) appeared in some grains and not in others, and the band features observed in Figure 
16.8 were not present in another portion of the same grain, Figure 16.7. This indicates that 
these patterns can be excited or suppressed without significant modification to the stress 
field. Given that the local deformation field might not be difficult to perturb, it is possible 
that constraints imposed by the spatial discretization may be inhibiting gradients in the 
deformation field. Consider the orientation gradient shown in Figure 16.6. This gradient 
is oblique to the mesh, and it may not be possible for the elements to deform in a manner 
consistent with the observed orientation gradients. If this were the case, it may also 
explain the inability of the model to capture the correct sign for the slope on the left side of 
the specimen. 
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The model assumes that the slip is homogeneous within an element, while 
experiments often show coarse slip traces. These present a challenge to the model in two 
ways. First is that the finite element model assumes displacement continuity. The 
assumption may be reasonable for the homogenized behavior of the element if there are a 
very large number of coarse slip bands within an element, but it is clearly violated when an 
element contains a countable number of coarse slip bands. The second issue brought about 
by coarse slip bands is that the dislocation structures formed on these coarse slip bands 
might present a more effective barrier to slip on other systems than is assumed in the 
models. Should coarse slip be considered specifically in the slip system hardening models? 

Deficiencies in the slip system hardening relations used in crystal plasticity models 
are well known. A constant slip system interaction matrix was assumed. This does not 
properly account for interactions among slip systems (Bassani, 1990). Although using the 
more sophisticated slip system interaction rnodel of Cuitino and Ortiz (1992) did not 
improve the predictions in the tricrystal simulations, that does not mean that the slip 
system model is unimportant. It is just not the dominant reason for the failure of the model 
in that simulation. It is also known that some crystals do not follow the Schmid law. Slip 
can depend on pressure as well as stress not acting directly on the slip system of interest 
(Qin and Bassani, 1992). This is generally not a big effect for aluminum, so it is doubtful 
that omission of non-Schmid contributions had a significant impact on these predictions. 
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